44 research outputs found

    A Database and Evaluation for Classification of RNA Molecules Using Graph Methods

    Get PDF
    In this paper, we introduce a new graph dataset based on the representation of RNA. The RNA dataset includes 3178 RNA chains which are labelled in 8 classes according to their reported biological functions. The goal of this database is to provide a platform for investigating the classication of RNA using graph-based methods. The molecules are represented by graphs representing the sequence and base-pairs of the RNA, with a number of labelling schemes using base labels and local shape. We report the results of a number of state-of-the-art graph based methods on this dataset as a baseline comparison and investigate how these methods can be used to categorise RNA molecules on their type and functions. The methods applied are Weisfeiler Lehman and optimal assignment kernels, shortest paths kernel and the all paths and cycle methods. We also compare to the standard Needleman-Wunsch algorithm used in bioinformatics for DNA and RNA comparison, and demonstrate the superiority of graph kernels even on a string representation. The highest classication rate is obtained by the WL-OA algorithm using base labels and base-pair connections

    Identifying the Machine Learning Family from Black-Box Models

    Full text link
    [EN] We address the novel question of determining which kind of machine learning model is behind the predictions when we interact with a black-box model. This may allow us to identify families of techniques whose models exhibit similar vulnerabilities and strengths. In our method, we first consider how an adversary can systematically query a given black-box model (oracle) to label an artificially-generated dataset. This labelled dataset is then used for training different surrogate models (each one trying to imitate the oracle¿s behaviour). The method has two different approaches. First, we assume that the family of the surrogate model that achieves the maximum Kappa metric against the oracle labels corresponds to the family of the oracle model. The other approach, based on machine learning, consists in learning a meta-model that is able to predict the model family of a new black-box model. We compare these two approaches experimentally, giving us insight about how explanatory and predictable our concept of family is.This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0287, the EU (FEDER), and the Spanish MINECO under grant TIN 2015-69175-C4-1-R, the Generalitat Valenciana PROMETEOII/2015/013. F. Martinez-Plumed was also supported by INCIBE under grant INCIBEI-2015-27345 (Ayudas para la excelencia de los equipos de investigacion avanzada en ciberseguridad). J. H-Orallo also received a Salvador de Madariaga grant (PRX17/00467) from the Spanish MECD for a research stay at the CFI, Cambridge, and a BEST grant (BEST/2017/045) from the GVA for another research stay at the CFI.Fabra-Boluda, R.; Ferri Ramírez, C.; Hernández-Orallo, J.; Martínez-Plumed, F.; Ramírez Quintana, MJ. (2018). Identifying the Machine Learning Family from Black-Box Models. Lecture Notes in Computer Science. 11160:55-65. https://doi.org/10.1007/978-3-030-00374-6_6S556511160Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)Benedek, G.M., Itai, A.: Learnability with respect to fixed distributions. Theor. Comput. Sci. 86(2), 377–389 (1991)Biggio, B., et al.: Security Evaluation of support vector machines in adversarial environments. In: Ma, Y., Guo, G. (eds.) Support Vector Machines Applications, pp. 105–153. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02300-7_4Blanco-Vega, R., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Analysing the trade-off between comprehensibility and accuracy in mimetic models. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 338–346. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30214-8_29Dalvi, N., Domingos, P., Sanghai, S., Verma, D., et al.: Adversarial classification. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 99–108. ACM (2004)Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/mlDomingos, P.: Knowledge discovery via multiple models. Intell. Data Anal. 2(3), 187–202 (1998)Duin, R.P.W., Loog, M., Pȩkalska, E., Tax, D.M.J.: Feature-based dissimilarity space classification. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 46–55. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17711-8_5Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems. J. Mach. Learn. Res. 15(1), 3133–3181 (2014)Ferri, C., Hernández-Orallo, J., Modroiu, R.: An experimental comparison of performance measures for classification. Pattern Recognit. Lett. 30(1), 27–38 (2009)Giacinto, G., Perdisci, R., Del Rio, M., Roli, F.: Intrusion detection in computer networks by a modular ensemble of one-class classifiers. Inf. Fusion 9(1), 69–82 (2008)Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.: Adversarial machine learning. In: Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, pp. 43–58 (2011)Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)Landis, J.R., Koch, G.G.: An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33, 363–374 (1977)Lowd, D., Meek, C.: Adversarial learning. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data mining, pp. 641–647. ACM (2005)Martınez-Plumed, F., Prudêncio, R.B., Martınez-Usó, A., Hernández-Orallo, J.: Making sense of item response theory in machine learning. In: Proceedings of 22nd European Conference on Artificial Intelligence (ECAI). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 1140–1148 (2016)Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277 (2016)Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016)Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 582–597. IEEE (2016)Sesmero, M.P., Ledezma, A.I., Sanchis, A.: Generating ensembles of heterogeneous classifiers using stacked generalization. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 5(1), 21–34 (2015)Smith, M.R., Martinez, T., Giraud-Carrier, C.: An instance level analysis of data complexity. Mach. Learn. 95(2), 225–256 (2014)Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models via prediction APIs. In: USENIX Security Symposium, pp. 601–618 (2016)Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)Wallace, C.S., Boulton, D.M.: An information measure for classification. Comput. J. 11(2), 185–194 (1968)Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992

    Prototype generation on structural data using dissimilarity space representation

    Get PDF
    Data reduction techniques play a key role in instance-based classification to lower the amount of data to be processed. Among the different existing approaches, prototype selection (PS) and prototype generation (PG) are the most representative ones. These two families differ in the way the reduced set is obtained from the initial one: While the former aims at selecting the most representative elements from the set, the latter creates new data out of it. Although PG is considered to delimit more efficiently decision boundaries, the operations required are not so well defined in scenarios involving structural data such as strings, trees, or graphs. This work studies the possibility of using dissimilarity space (DS) methods as an intermediate process for mapping the initial structural representation to a statistical one, thereby allowing the use of PG methods. A comparative experiment over string data is carried out in which our proposal is faced to PS methods on the original space. Results show that the proposed strategy is able to achieve significantly similar results to PS in the initial space, thus standing as a clear alternative to the classic approach, with some additional advantages derived from the DS representation.This work was partially supported by the Spanish Ministerio de Educación, Cultura y Deporte through a FPU fellowship (AP2012–0939), Vicerrectorado de Investigación, Desarrollo e Innovación de la Universidad de Alicante through FPU program (UAFPU2014–5883), and the Spanish Ministerio de Economía y Competitividad through Project TIMuL (No. TIN2013-48152-C2-1-R supported by EU FEDER funds)

    A note on core research issues for statistical pattern recognition RID F-3169-2010

    No full text
    this paper aims to stimulate discussion in the pattern recognition community on the structural differences between statistical pattern recognition and closely related disciplines in order *Corresponding author. Tel.: 31-15-278-614

    A Fast Approach to Improve Classification Performance of ECOC Classification Systems

    No full text
    Error correcting output coding is a well known technique to decompose a multi-class classification problem into a group of two-class problems which can be faced by using a combination of binary classifiers. Each of them is trained on a different dichotomy of the classes. The way the set of classes is mapped on this set of dichotomies may essentially influence the obtained performance. In this paper we present a new tool, the k-NN lookup table to optimize this mapping in a fast way and a fast procedure to change the dichotomies in a proper way. Experiments on artificial and public data sets show that the proposed procedure may significantly improve the ECOC performance in multi-class problems

    Almost autonomous training of mixtures of principal component analyzers

    No full text
    In recent years, a number of mixtures of local PCA models have been proposed. Most of these models require the user to set the number of submodels (local models) in the mixture and the dimensionality of the submodels (i.e., number of PC's) as well. To make the model free of these parameters, we propose a greedy expectation-maximization algorithm to find a suboptimal number of submodels. For a given retained variance ratio, the proposed algorithm estimates for each submodel the dimensionality that retains this given variability ratio. We test the proposed method on two different classification problems: handwritten digit recognition and 2-class ionosphere data classification. The results show that the proposed method has a good performance
    corecore